Term Information

Effective Term

Spring 2015

General Information

Course Bulletin Listing/Subject Area	Psychology	
Fiscal Unit/Academic Org	Psychology - D0766	
College/Academic Group	Arts and Sciences	
Level/Career	Graduate, Undergraduate	
Course Number/Catalog	5425	
Course Title	Introduction to Functional Magnetic Resonance Imaging	
Transcript Abbreviation	INTRO fMRI	
Course Description	A general introduction to the physical bases of Magnetic Resonance Imaging (MRI), the physiological bases and principles of functional MRI, MRI related safety issues, design and analysis of fMRI experiments, and the operation of the Siemens 3T Trio system with hands-on experience.	
Semester Credit Hours/Units	Fixed: 3	

Offering Information

Length Of Course	14 Week
Flexibly Scheduled Course	Never
Does any section of this course have a distance education component?	No
Grading Basis	Letter Grade
Repeatable	No
Course Components	Laboratory, Lecture
Grade Roster Component	Lecture
Credit Available by Exam	No
Admission Condition Course	No
Off Campus	Never
Campus of Offering	Columbus

Prerequisites and Exclusions

Prerequisites/Corequisites Exclusions Graduate standing or permission of instructor

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code Subsidy Level Intended Rank 42.0101 Doctoral Course Junior, Senior, Masters, Doctoral

Requirement/Elective Designation

The course is an elective (for this or other units) or is a service course for other units

Course Details				
Course goals or learning objectives/outcomes	Students will learn safety issues in the MRI environment			
	 Students will learn operation of the Siemens 3T Trio system 			
	 Students will learn the physical bases of Magnetic Resonance Imaging (MRI) 			
	Students will learn the physiological bases and principles of functional MRI			
	 Students will learn principles for designing fMRI experiments 			
	Students will learn basic data analysis techniques			
Content Topic List	• 1. An Introduction to fMRI			
	• 2. MRI Scanners			
	• 3. Basic Principles of MR Signal Generation			
	•4. Basic Principles of MR Image Formation			
	• 5. MR Contrast Mechanisms and Pulse Sequences			
	• 6. From Neuronal to Hemodynamic Activity			
	•7. BOLD fMRI: Origins and Properties			
	•8. Signal, Noise, and Preprocessing of fMRI Data			
	• 9. Experimental Design			
	 10. Statistical Analysis: Basic Analyses 			
	 11. Statistical Analysis II: Advanced Approaches 			
	● 12. Advanced fMRI Methods			
Attachments	• Psych 5425 syllabus.doc: Syllabus			
	(Syllabus. Owner: Paulsen,Alisa Marie)			

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Paulsen, Alisa Marie	12/16/2013 04:04 PM	Submitted for Approval
Approved	Vasey,Michael William	12/16/2013 04:50 PM	Unit Approval
Approved	Haddad,Deborah Moore	12/16/2013 05:03 PM	College Approval
Pending Approval	Vankeerbergen,Bernadet te Chantal Nolen,Dawn Jenkins,Mary Ellen Bigler Hogle,Danielle Nicole Hanlin,Deborah Kay	12/16/2013 05:03 PM	ASCCAO Approval

Psych 5425 Introduction to Functional Magnetic Resonance Imaging

Course Number: # XXXXX Instructor:

Professor Zhong-Lin Lu Office: Psychology Building 062 Phone # 614-247-8252 Email: <u>lu.535@osu.edu</u> Office Hours: 1:00 – 2:00 pm Tuesday Class Time: 2:15 – 5:00 pm Tuesday Class Location: PS 0117

Course Description: A general introduction to the physical bases of Magnetic Resonance Imaging (MRI), the physiological bases and principles of functional MRI, MRI related safety issues, design and analysis of fMRI experiments, and the operation of the Siemens 3T Trio system with hands-on experience.

Required Textbook: *Functional Magnetic Resonance Imaging*, by S. A. Huettel, A. W. Song, G. McCarthy, Sinauer Associates, Inc. Sunderland, MA, USA (2004 or 2008).

Course Requirements: The course consists of lecture, lab, and project components. Students are required to pass safety training, and are required to participate in group projects. There will be a mid-term and a final project presentation. Class grades will be assigned according to the following weights: Class Participation: 10%; Midterm, 30%; Group participation: 30%; Group Project, 30%.

Grading Scale: Letter (A, B, C, D, E).

Class Attendance Policy: Attendance for this course is mandatory, although points are not given for attendance. It is assumed that you will come to class for both lectures and lab sessions. If you are forced by circumstances to miss a class, it is your responsibility to find out what information you may have missed - including both notes from the lecture and any announcements that may have been given in the class you missed.

Academic Misconduct Statement: It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct <u>http://studentlife.osu.edu/pdfs/csc_12-31-07.pdf</u>."

Disability Services Statement: "Students with disabilities that have been certified by the Office for Disability Services will be appropriately

accommodated and should inform the instructor as soon as possible of their needs. The Office for Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 292-3307, TDD 292-0901; http://www.ods.ohio-state.edu/."

Syllabus

Week 1 Lecture 1: Introduction to MRI and fMRI Lecture 2: Safety training Tour of CCBBI
Reading: Chapter 1, An Introduction to fMRI, pp 1-30. Chapter 2, MRI Scanners, pp 31-56
 Week 2 Lecture 3: Basic principles of MR signal generation Lecture 4: Basic principles of MR image formation Reading: Chapter 3, Basic Principles of MR Signal Generation, pp 57-88 Chapter 4, Basic Principles of MR Image Formation, pp 89-120
 Week 3 Lecture 5: Contrast mechanisms and pulse sequences (I) Lecture 6: Contrast mechanisms and pulse sequences (II) Reading: Chapter 5, MR Contrast Mechanisms and Pulse Sequences, pp 121-158
Week 4 Lab 1, Patient Registration, Viewing Task Card, Exam Card Lab 2: Protocol Development + Structural Imaging
 Week 5 Lecture 7: Hemodynamic activity Lecture 8: BOLD fMRI Reading: Chapter 6, From Neuronal to Hemodynamic Activity, pp 159-192 Chapter 7, BOLD fMRI: Origins and Properties, pp 193-242
 Week 6 Lecture 9: Spatial and temporal properties of fMRI Lecture 10: Signal and noise in fMRI Lecture 11: Preprocessing of fMRI data Reading: Chapter 8, Signal, Noise, and Preprocessing of fMRI Data, pp 243-292
Week 7 Mid-Term
Week 8 Lecture 12: Experimental design Lecture 13: Principles of fMRI data analysis Reading: Chapter 9, Experimental Design, pp 293-330

Chapter 10, Statistical Analysis: Basic Analyses, pp 331-376

Week 9 Lab 3: BOLD Imaging (block design)

Week 10 Lecture 14: Anatomical analysis with BrainVoyager (Dr. Li) Lecture 15: Block-design analysis with BrainVoyager (Dr. Li)

Week 11 Lab 4: BOLD Imaging (event related design)

Week 12 Lecture 16: Advanced fMRI data analysis
 Lecture 17: Advanced fMRI Methods
 Reading Chapter 11, Statistical Analysis II: Advanced Approaches, pp 377-418
 Chapter 12, Advanced fMRI Methods, pp 419-442.

Week 13 Lecture 18: Event-related design analysis with BrainVoyager (Dr. Li)

Week 14 Group Projects

Final Presentations of group projects